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Abstract—Many multi-objective evolutionary algorithms rely
on the non-dominated sorting procedure to determine the relative
quality of individuals with respect to the population. In this
paper we propose a new method to decrease the cost of this
procedure. Our approach is to determine the non-dominated
individuals at the start of the evolutionary algorithm run and
to update this knowledge as the population changes. In order
to do this efficiently we propose a special data structure called
the M-front, to hold the non-dominated part of the population.
The M-front uses the geometric and algebraic properties of the
Pareto dominance relation to convert orthogonal range queries
into interval queries using a mechanism based on the nearest
neighbor search. These interval queries are answered using
dynamically sorted linked lists. Experimental results show that
our method can perform significantly faster than the state of
the art Jensen-Fortin’s algorithm, especially in many-objective
scenarios. A significant advantage of our approach is that if we
change a single individual in the population we still know which
individuals are dominated and which are not.

Index Terms—Computational cost reduction, Data structures,
Evolutionary computation, K-d tree, Many-objective optimiza-
tion, Multi-objective optimization, Nearest neighbor searches,
Non-dominated sorting, Pareto optimization.

I. INTRODUCTION

AN INDIVIDUAL solution of a multi-objective optimiza-
tion problem is said to Pareto dominate a different

solution if it is better with respect to at least one objective
while not being worse with respect to any objective. Non-
dominated sorting is the process of dividing the population of
a multi-objective evolutionary algorithm (MOEA) into fronts
with respect to Pareto dominance. Belonging to a specific
front gives us a measure of relative quality of an individual
with respect to the rest of the population. Many MOEAs such
as NSGA-II [2], GDE3 [3] or DEMO [4] require that non-
dominated sorting is performed at each generation to determine
the individuals that survive into the next generation.

This procedure often becomes time-consuming compared
to the rest of the algorithm. This is especially the case with
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large populations and/or high number of objectives. One can
parallelize the objective function evaluations for the population
into available processors, however the sorting has to be
performed in serial and costs more computational time as
the number of objectives grows due to the nature of Pareto
dominance. As an example we profiled a run of a MOEA
algorithm called GDE3 [3] implemented on a single processor
on a WFG9 [5] problem with 4 objectives and an initial
population size of 1000 individuals for 500 generations. We
found out that approximately 82% of computer time and 79%
of computer instructions1 were used on non-dominated sorting.
In computationally expensive problems this ratio will change.
Nonetheless, it is desirable to reduce the cost of non-dominated
sorting, especially for large populations.

The first to recognize and address this problem were Deb et
al. in [2]. Their method called the fast non-dominated sorting
compares each individual with each other and caches the result
of these comparisons in order to avoid comparing the same
two individuals twice.

For further improvement, several researchers have proposed
different approaches, which are mainly categorized into the
following three.
Divide and conquer: These methods are based on an article
by Kung et al. [6]. They divide the problem with respect to
both dimension (number of objectives) and population size.
The first attempt by Jensen [7] in 2003 achieved significant
speedup and a reduction in computational complexity, but it
failed to deal with the case where two individuals have a same
value for a certain objective. Treating this case turned out
to be more difficult than it seemed. Luckily, this problem
was recently solved by Fortin et al. [8] while preserving
both speed and computational complexity. These algorithms
achieve astonishing improvement in both theory (computational
complexity) as well as in practice (computational wall clock
time). Unfortunately the performance declines to the level of
fast non-dominated sorting for a high number of objectives.
Moreover these algorithms are rather complicated and static in
the sense that when one individual is changed there is no easy
way to determine the non-dominated fronts of the modified
population other than to run the algorithm again.
Reducing the number of dominance comparisons: These meth-
ods try to infer domination relationships using the transitivity
property of Pareto dominance. Notable recent algorithms are
the climbing sort and the deductive sort by McClymont

1We used a computer profiler Callgrind, which runs the program on a virtual
machine and counts the instructions executed.
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and Keedwell [9]. These algorithms achieve very significant
speedup, but they are specifically designed for populations
where the domination relationship between individuals is
relatively common. Unfortunately this assumption does not
hold for problems with a large number of objectives. The fewer
domination relationships there are, the fewer such relationships
can be inferred and the performance suffers. Even so, these
methods constitute a significant innovation since they are
dynamic in the sense that when one individual changes, the
information about the non-dominated fronts can be efficiently
updated.
Archiving the non-dominated individuals: The problem these
methods try to solve is different from the original non-
dominated sorting. Schütze [10] calls this problem the dynamic
non-dominance problem. Instead of starting from scratch and
computing the non-dominated fronts for a certain population,
these methods concentrate on keeping and updating a single
non-dominated front. These methods are of course dynamic
as in the previous paragraph. Notable research has been done
by Fieldsend et al. [11] and by Schütze [10]. Both studies
propose original data structures to hold and maintain the set
of non-dominated individuals. Although the speedup achieved
by these methods over the brute force method is significant, it
is not competitive with the divide and conquer methods.

In this paper we propose a new method to reduce the cost
of non-dominated sorting. This method is closely linked with
the dynamic non-dominance problem.

The main idea is to compute which individuals are non-
dominated at the beginning of the MOEA and then update
this knowledge each time an individual changes. This way
the non-dominated individuals are known at all times. Thus
we do not need to call non-dominated sorting to compute the
first front. In the case there is more than one front to compute
then we apply non-dominated sorting just on the subset of
dominated individuals. When the number of objectives grows,
there are fewer and fewer dominated individuals which reduces
the need to call non-dominated sorting. Therefore our method
thrives on problems in which the number of non-dominated
solutions is large.

We keep track of the non-dominated individuals by storing
them in a special data structure which we call an archive. We
update this archive whenever an individual in the population
changes. The computational cost of updating the archive is
critical, therefore a major part of our work is dedicated to an
efficient implementation of a fast archive which we call an
M-front.

The M-front keeps track of all the non-dominated individuals
in the population. This means that when a new individual is
generated, the M-front needs to determine if this individual
is dominated by any individual from the M-front and if it
is not, to determine which individuals are dominated by the
new individual. The M-front uses the geometric and algebraic
properties of the Pareto dominance relation to reduce the
number of individuals which need to be compared. It converts
the orthogonal range queries related to Pareto dominance
to interval queries. In order to answer these interval queries
efficiently, the M-front keeps all its individuals sorted in linked
lists. There is one linked list for each objective and this list

keeps all the individuals sorted with respect to that objective. In
order to convert an orthogonal range query into interval queries,
an auxiliary individual needs to be chosen from the M-front.
The role of this individual is just to perform the conversion.
We found out that the closer this auxiliary individual is to the
new individual, the smaller are the resulting interval queries
and the faster is the computation. In order to find an auxiliary
individual which is as close as possible to the new individual,
the M-front keeps an internal K-d tree data structure to perform
approximate nearest neighbor search. The M-front can be
also used as a stand-alone archive for algorithms which use
unbounded archives such as [12] or [11].

Experiments confirm that our method can outperform the
state of the art Jensen-Fortin’s divide and conquer algorithm
up to certain population sizes. The performance of our method
scales well, especially for a large number of objectives.
Since our approach is dynamic in nature, the non-dominated
individuals are known at all times which is a significant
advantage over the state of the art method.

There are algorithms which use more precise methods,
such as the hypervolume [13], to estimate the quality of
individuals in the population. These algorithms can yield better
solutions than algorithms which use less precise mechanisms
[14]. However, the main problem with such algorithms is
that the hypervolume is extremely costly to compute for big
populations and large numbers of objectives [15]. In addition,
even if the hypervolume could be computed fast, there would
still be the need to determine the non-dominated individuals
because the hypervolume is computed from them.

This paper is a significant revision and extension of our
previous work [1], in which we were restricted to differential
evolution [16] algorithms. In this work we generalize our
method to any multi-objective evolutionary algorithm (MOEA)
which uses non-dominated sorting. In addition, as we mentioned
before, now our approach can be applied to handle archives of
MOEAs. We have also improved the implementation of our
method. In our original work we use skip lists to keep the
individuals sorted by each objective. Now we use simple linked
lists and a hash-table to retrieve the positions of individuals in
the linked lists. This results in faster insertions and removals,
smaller memory usage and simpler implementation. The
K-d tree is a data structure which gets unbalanced after many
insertions and deletions. In our previous work we mitigated
this problem by rebuilding the K-d tree from scratch after a
fixed number of insertions and deletions. Now we propose a
new, more frugal mechanism which detects if the K-d tree
is unbalanced. We also now include a comparison with the
state of the art Jensen-Fortin’s algorithm on both practical and
conceptual level. Lastly, we added a theoretical section which
derives the average case expected computational complexity
on a random model.

The organization of this paper is as follows: first in Section II
we introduce a general framework of our approach. This
framework introduces the concept of an archive and explains
its usage in detail, while the concrete implementation of one
such archive is described in Section III. The computational
complexity of the proposed approach is theoretically explored
in Section IV. In Section V we provide a conceptual compar-
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ison with Jensen-Fortin’s algorithm while the experimental
comparison is shown in Section VI. The experimental section
also contains a comparison with fast non-dominated sorting.

II. PROPOSED METHOD

A. Notation

First, let us establish some basic notation that we shall use
in the rest of this article.

We have a minimization problem F consisting of M objective
functions:

F = (f1, f2, . . . , fM ) .

Each function has n variables:

fi : D ⊆Rn 7→ R for i = 1, . . . ,M.

The problem may contain arbitrary constraints. We say that
F maps the decision space D to the objective space RM . We
call the members of the decision space decision vectors and
the members of objective space objective vectors.

We define an individual to be a pair (id,X) where id ∈ N
is a unique identifier and X ∈ Rn is a decision vector. This
way we can distinguish between several individuals with the
same value in the decision space. 2

To avoid confusion when using subscripts and to simplify
notation we use the following convention: when we have an
individual a = (ida, Xa) then instead of writing fi (Xa) to
denote the value of i-th objective for individual a, we simply
write fi (a). Similarly, instead of F (Xa) we simply write
F (a) to denote the objective vector of a.

We say that an individual a dominates an individual b if

fi(a) < fi(b) for some i ∈ {1, . . . ,M}

and
fi(a) ≤ fi(b) for all i ∈ {1, . . . ,M}.

We call this relation Pareto dominance and denote it as:

a ≺ b : a dominates b.

If for two individuals a, b neither a ≺ b nor b ≺ a, we call a
and b mutually non-dominated.

B. Applicability

Our method requires some modifications to the usual
computational flow of the MOEA. To illustrate this, we restrict
ourselves to an evolutionary algorithm following the scheme in
Fig. 1. We demonstrate our method on this generic version of a
MOEA. Popular algorithms such as NSGA-II [2] or GDE3 [3]
mentioned earlier both follow this scheme.

The algorithm has a generating phase on lines 3 to 7 and
a survival selection phase on lines 8 to 10. In order for an
algorithm to benefit from our method we need to modify both
phases. We get an equivalent algorithm described in Fig. 2.

The individual-by-individual steady-state generation and
insertion of individuals may be confusing, but indeed also

2In our implementation the id is simply a C++ pointer to the vector X in
memory. In order for the id to remain valid, the individuals do not change
their addresses in the memory once they are created.

Algorithm: MOEA that can use our method
Input: Initial population size N
Output: Approximation of the Pareto front by a

population P
1 initialize population P = {a1, ..., aN}
2 while arbitrary stopping condition not satisfied do

Evolutionary loop
3 while arbitrary stopping condition not satisfied do

Generating phase
4 generate new individual a′

5 insert a′ into P
6 remove arbitrary dominated a ∈ P if needed
7 end
8 non-dominated sorting
9 remove worst non-dominated fronts

10 trim P back to size N using a secondary criterion
11 end
12 report P

Fig. 1. Generic MOEA which can benefit from our method.

algorithms which generate their individuals in large chunks,
such as the NSGA-II, can be rearranged to conform to Fig. 1.
The mechanism which generates a new individual on line 4
is completely arbitrary. Therefore for NSGA-II the step on
line 4 can be just taking the new individual from the offspring
population. NSGA-II does not remove individuals in the
generating phase, but some algorithms such as GDE3 do.
Therefore we allow for such removals on line 6.

Note that in the generating phase we can remove only
individuals which are dominated. This is a limitation of our
approach. Later we shall explain why we need this limitation.

C. Overnondomination

It is a well known fact that there is a tendency for a large
proportion of the population to become non-dominated when
the number of objectives increases [17]. This may also happen
for 2 and 3 objective problems, especially in the later stage
of the search, depending on the problem [18]. We call this
phenomenon overnondomination.

Overnondomination is usually a bad thing. It causes some
MOEAs to stagnate and even recede from the Pareto front.
As we mentioned in the introduction it also causes problems
for novel non-dominated sorting methods that try to infer
domination relationships, such as the deductive sort.

In this work on the other hand, we use overnondomination to
our advantage. We use it to bridge the dynamic non-dominance
problem to the non-dominated sorting problem.

D. Using an archive to avoid non-dominated sorting

In the following we use the term archive to mean a
data structure which holds a set of mutually non-dominated
individuals. Later we provide an exact implementation of an
archive which we call the M-front, but all results in this section
are applicable to any archive.
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The algorithm in Fig. 1 uses non-dominated sorting to
determine which individuals get discarded after the end of
the generating phase. What we need to realize is that the
algorithm does not need to know all the fronts. It only needs
enough fronts so that they contain at least N individuals.

If the population suffers from overnondomination such as
in the right side of Fig. 3, there is a good chance that the
algorithm only needs to know the first non-dominated front i.e.
the non-dominated part of the population.

Our method is to keep track of the non-dominated part of
the population at all times. We do this by keeping it in an
archive A. We update the archive with each single change to the
population so that it contains only non-dominated individuals.
We can see this in lines 5 to 10 of Fig. 2.

If we know into which front an individual a belongs, we
say that a has a determined front. All the individuals in the
archive have determined fronts, since they belong to the first
front.

We can now see the explanation of our limitation of removing
only dominated individuals in the generation phase of algorithm
in Fig. 1. If we would remove a non-dominated individual a
from the archive A, there is a possibility that some individual
a′ ∈ P \ A (in P but not in A) which was dominated by
a might become no longer dominated and we would need
to insert it into A to keep the integrity of the archive. Then
we would need a mechanism to detect such individuals a′

efficiently. In this work however, we limit ourselves to the case
where non-dominated individuals cannot be removed from the
population if there are some dominated individuals. If P \A
is empty, then we are free to remove even non-dominated
individuals without breaking the integrity of the archive.

When it comes to discarding the worst non-dominated fronts
at the end of the evolutionary loop of Fig. 2, we have a good
chance that we do not need to perform any non-dominated
sorting at all (line 11). We just discard all the individuals
which are not in the archive.

If the archive contains fewer than N individuals (line 14),
we need to determine additional fronts. We do this using the
simple method described in Fig. 4. We initialize an empty set
S to hold candidates for non-dominated individuals (line 1).
For each individual ai in the population of size k we determine
whether the individual is dominated by an individual from S
(lines 3 to 9). If it is not dominated (line 10) we add this
individual to S and check which individuals in S it dominates.
These individuals are then removed from S (line 14). We run
this procedure repeatedly until enough individuals have their
front determined.

Even if the archive does not contain more individuals than
we need for the next generation (at least N ) our task is greatly
reduced since we need to compute the additional non-dominated
fronts from a smaller set P \A.

The computational complexity of our approach depends
on how fast we can perform insertions and removals from
the archive. In the following section we shall provide a fast
archive whose usage can result in average case complexity of
O(M2N2− 1

M−1 ) which we prove in Section IV.

Algorithm: Generic MOEA using our method
Input: Initial population size N
Output: Approximation of the Pareto front by a

population P
1 initialize population P = {a1, ..., aN}
2 determine non-dominated individuals in P
3 construct archive A from the non-dominated individuals
4 while arbitrary stopping criterion not satisfied do

Evolutionary loop
5 while arbitrary stopping criterion not satisfied do

Generating phase
6 generate new individual a′

7 insert a′ into A and P
8 remove dominated individuals from A
9 remove arbitrary a ∈ P \A if needed

10 end
11 if A contains more than N individuals then
12 remove all individuals not in A from P
13 trim A and P to size N using a secondary

criterion
14 else
15 while # individuals with determined front < N do
16 determine next non-dominated front
17 end
18 remove individuals with undetermined fronts
19 trim P back to size N using a secondary criterion
20 end
21 end
22 report P

Fig. 2. Generic MOEA using our method.

  

# of individuals
to survive

0

N
Discarded

Survives

Normal Overnondomination

F
1

F
2

F
3

F
4

F
1

F
2

F
3

Survival 
threshold
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III. IMPLEMENTATION OF THE ARCHIVE

A. Characterization

In the previous section we argued that the problem of
reducing the cost of non-dominated sorting can be approached if
we had a sufficiently fast data-structure that manages a mutually
non-dominated part of the population. Here we describe such
a data structure, which we call an M-front. In the following
sections, we gradually build up the main ideas behind the
M-front.
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Algorithm: Determine non-dominated individuals
Input: Population P = {a1, . . . , ak}
Output: S - set of non-dominated individuals S ⊆ P

1 S ← ∅
2 for i := 1 to : k do
3 bool ai_non_dominated ← true
4 forall the a ∈ S do
5 if a ≺ ai then
6 ai_non_dominated ← false
7 break
8 end
9 end

10 if ai_non_dominated then
11 insert ai into S
12 forall the a ∈ S do
13 if ai ≺ a then
14 remove a from S
15 end
16 end
17 end
18 end
19 report S as the non-dominated front

Fig. 4. Determining a single non-dominated front
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The M-front data structure is a container which holds a set
(in the mathematical sense) of individuals. It has the important
invariance property that all individuals it contains are mutually
non-dominated. This means that if we insert a new individual
into the data structure, we need to determine and remove
all individuals which have become dominated. Next we shall
explain how to do this efficiently.

B. Geometric motivation

We illustrate our ideas on a two-dimensional (2 objectives)
example. The circles in Fig. 5 represent individuals in an
archive of mutually non-dominated individuals. We insert an

individual new into the archive A. In order to preserve the
invariant of A we need to find out:

1) if new dominates any individuals in A
2) if new is dominated by any individuals in A

Note that a positive answer to one of these questions implies
a negative answer to the other, but there is a case when both
answers are negative.

In the geometrical sense, we need to find out which
individuals are in the areas dominated by or dominating new.
These areas are rectangles aligned with the axes. The task
of finding all the vectors which lie in such a rectangle is
called an orthogonal range query. This is a well researched
subject in the area of computational geometry and many clever
techniques were developed to perform this task efficiently.
Some are described in [19].

However the specific nature of our problem allows us to use
a different approach. As we shall see in the following section,
we can transform the orthogonal range query into an interval
query, which is simpler. This is thanks to the specific shape
of the orthogonal queries which come from the domination
computation.

C. Transformation of orthogonal queries

First we select an arbitrary individual in the archive. We
call this individual the reference individual and mark it with
the symbol ref. Next we compare the ref and new for
dominance. There are three possible outcomes:

1) ref dominates new
2) new dominates ref
3) ref and new are mutually non-dominated

The first case is simple. We simply abort inserting new.
Let us look at the second case which is illustrated in Fig. 6.

We already know that new belongs into the archive since it
cannot be dominated by any other individual. We still need to
determine all the individuals which are dominated by new.

We see that the area dominated by ref does not contain
any individuals from the archive, since this would violate the
invariance. Therefore we can subtract this area from the area
dominated by new and we get two intervals which contain all
the individuals which are dominated by new.

If an individual a is dominated by new then:

f1 (a) ∈ [f1 (new) ; f1 (ref)]

or f2 (a) ∈ [f2 (new) ; f2 (ref)]

The 2-dimensional case where new dominates ref is
misleadingly simple. We see that the individuals which lie in at
least one of the intervals are exactly the ones that are dominated
by the new. In more than 2 dimensions the individuals which lie
in at least one of the intervals form a superset of the individuals
dominated by new and therefore we need to compare all of
them for dominance.

Let us move to the last case. The ref and new are mutually
non-dominated. Here we need to find out both if new itself is
dominated and if it is not, which individuals new dominates.
We do this by constructing the areas which are dominating
and dominated by new, choosing a ref, constructing these
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areas for ref and subtracting them from the areas for new.
This process is illustrated in Fig. 7.

Instead of searching the orthogonal areas which are left by
this subtraction, we search the intervals marked by letters U
and L in Fig. 7. More formally:

If an individual a dominates new then:

f1 (a) ∈ [f1 (ref) ; f1 (new)] =: U

and if it is dominated by new then:

f2 (a) ∈ [f2 (new) ; f2 (ref)] =: L.

We can see that there are individuals which belong to these
intervals, but neither dominate nor are dominated by new.
Therefore we need to compare all of them for dominance with
new. In the future we hope to find a way how to avoid having
to do this. Next, we formalize our findings in a more rigorous
manner.

D. Reference sets

In the previous section we described a method to transform
the areas that need to be searched when we insert a new
individual into the archive. Here we formalize our ideas. First
we define the area that needs to be searched.

Definition 1 (Reference areas and reference sets). Let A =
{a1, ..., aN} be a set of mutually non-dominated individuals.
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Fig. 7. Transformation of an orthogonal query into interval queries
(case where new and ref are mutually non-dominated).

Let new be an individual which does not belong to A and let
ref be an arbitrary individual from A.

The upper reference area for individual new induced by
individual ref is the set RAU (new,ref) ⊆ RM given by:

RAU (new,ref) :=
⋃

i such that
fi(ref)<fi(new)

{
Y ∈ RM | yi ∈ [fi(ref); fi(new)]

}
.

(1)
We call the set of all individuals in A whose objective vector

lies in RAU (new,ref) the upper reference set of individual
new induced by individual ref. We shall denote it by:

RSU (new,ref) := {a ∈ A | F (a) ∈ RAU (new,ref)}.
(2)

Conversely, the lower reference area for individual new
induced by individual ref is the set RAL (new,ref) ⊆ RM
given by:

RAL(new,ref) :=
⋃

i such that
fi(new)<fi(ref)

{
Y ∈ RM | yi ∈ [fi(new); fi(ref)]

}
.

(3)
Analogously we have the lower reference set:

RSL(new,ref) := {a ∈ A | F (a) ∈ RAL(new,ref)}.
(4)
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This definition is slightly more strict than in our previous
work [1]. We can see an illustration of both upper and
lower reference areas for several different choices of reference
individual in Fig. 8.

The following theorem says that when we are inserting a
new individual into the archive, we need to compare it only to
individuals from the upper and lower reference set.

Theorem 1 (Properties of reference sets). Let A =
{a1, ..., aN} be a set of mutually non-dominated individuals.
Let new be an individual which does not belong to A and let
ref be an arbitrary individual from A.

Then:
1) if new dominates some a ∈ A then

a ∈ RSL(new,ref),

2) if some a ∈ A dominates new then

a ∈ RSU (new,ref).

We shall prove only the first statement. The proof of the
second statement is analogical.

Proof: We assume that new dominates some a. The
situation is illustrated in Fig. 9.

First we establish that F (new) 6= F (ref). If F (new) =
F (ref) were true, this would imply that ref dominates a,
which is in conflict with the assumption that all individuals in
A are mutually non-dominated.

new

a

ref

f
2

f
3

f
5

f
4

f
1

Fig. 9. Illustration of the proof of Theorem 1. f1, . . . , f5 are the axes of
individual objective functions.

Now let us handle the trivial case where F (a) = F (ref).
Since new dominates a, there must exist an objective fi such
that fi(new) < fi(a) = fi(ref). Therefore the union on the
right side of (3) is not empty and contains F (a).

Now we establish that there exists an objective fi such that:

fi(a) < fi(ref) (5)

If the opposite were true, then either F (a) = F (ref) would
hold, or ref would dominate a. We already handled the first
case and the second is in conflict with the assumption of the
theorem.

Since new dominates a, we have:

fi(new) ≤ fi(a). (6)

By combining (5) and (6) we get:

fi(new) < fi(ref) and fi(a) ∈ [fi(new); fi(ref)],

which means that a belongs to the lower reference set.

E. M-list

1) Data structure: Now we describe how to construct the
reference sets for a given pair (new,ref) efficiently.

To construct a reference set, we need to find all the
individuals whose objective values lie in certain intervals. If we
want to determine all the items whose attribute lies in a certain
interval, it is helpful to have that data sorted by that attribute.
We need to search according to all objectives, therefore we
keep the population sorted by each objective. We keep a sorted
doubly linked list for each objective. An illustration of these
lists is shown in Fig. 10. The upper and lower reference sets
can be constructed simply by iterating between the positions
of ref and new.

However, the lists do not support random access. There is
also no mechanism for fast insertion in logarithmic time such as
with RB trees or skip-lists. This is again a slight modification
to our previous work [1] where we used skip-lists. In order to
remove or insert an individual into these lists while maintaining
the ordering we use an alternative mechanism. We maintain a
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Fig. 10. Constructing reference sets using linked lists.

hash-table that maps the id’s of the individuals in the archive
to an object which holds the positions of that individual in
each list. 3 We call the resulting data structure consisting of
M linked lists and a hash-table an M-list.

2) Insertions and removals: The M-list supports these two
fundamental operations:
• remove(a) removes an arbitrary individual
• insert(new, ref) inserts a new individual using a

reference individual
Removal of an arbitrary individual is simple. We just:
1) Retrieve the positions of a from the hash-table
2) Remove the entry for a from the hash-table
3) Remove the entry for a from each list

In the average case retrieval and removal from the hash-table
is an O(1) operation. Removal from a linked list is also an
O(1) operation. Since we have M lists, removal is a O(M)
operation.

On the other hand, the insert procedure is significantly
more complex. This procedure is illustrated in Fig. 11 and
described in Fig. 12. The key idea is the combination of the
creation of reference sets with finding the correct position for
the new in each list.

In the description of the algorithm we use the programming
concept of an iterator. An iterator marks the position of an
element in a data structure. If it is an iterator, then by *it
we denote the item at that position. In our example iterator it
marks the position of a certain individual in a linked list and
*it is the individual itself. We establish the convention that
the linked lists in the M-list are sorted in an ascending order.

Now we explain the steps of Fig. 12. When we insert a new
individual into the M-list, we first check if it is dominated by
the reference individual (line 2). If this is the case, we know
immediately that the new individual cannot be inserted into
the archive and abort the insertion. If new dominates ref
(line 7) we know that new is not dominated by any individual

3We implemented this in C++ using a std::unordered_map map-
ping Individual* pointers to an object that held M iterators of type
std::list::iterator, one for each list.
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Fig. 11. Insertion into the M-list.

in the M-list. We store this information for future optimization
(line 8).

If new is not dominated by ref, we proceed with con-
structing the reference sets. We initialize the upper and
lower reference sets, RSU (new,ref) and RSL(new,ref),
as empty. Then for each list (line 13) we must determine the
correct position for new. We initialize an iterator to the position
of ref in the current list. If the value of the current objective
fi is the same for new and ref, we know that objective is
not relevant for creation of the reference sets. We also know
that the position of ref is also the correct position of new.
In this case we just insert new to a neighboring position to
ref and move to the next objective (line 16).

If fi(new) < fi(ref), we know that fi is relevant for
the creation of the lower reference set. There may be more
than one individual a with f(a) = fi(ref) in the list, so
we increment4 the iterator to the last position where this
holds since we want to capture all individuals from the
interval [fi(new); fi(ref)]. We then start to decrement the
iterator, which moves it toward the place where fi(new)
belongs in the list. Simultaneously we are creating the proper
reference set (line 20). After each decrement, we check
if fi(*it) ≥ fi(new), which is equivalent to the lower
reference set requirement: fi(*it) ∈ [fi(new); fi(ref)]. If
this condition holds, we insert the individual at position it
into the lower reference set. Once the condition fails, we know
that we have found the right place to insert new. We insert
new and move to the next list (line 23).

If fi(new) > fi(ref) the situation is symmetrical. We
perform the exact opposite of all operations from the previous
case while constructing the upper reference set.

Once the insertion of new into the lists and the construction
of the reference sets is complete we create a position object
holding the position of new in each list. We insert this object
into the hash-table (line 33) so that we can retrieve new from
the lists in constant time.

4In Fig. 11 incrementing may be seen as a downward movement by one
box.
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Algorithm: insert(ref, new)
Input: list1, . . . , listM , hash-table H , ref, new
Output: R - set of removed individuals from the M-list

1 R← ∅
2 if ref dominates new then
3 insert new into R
4 return R
5 end
6 bool new_non_dominated ← false
7 if new dominates ref then
8 new_non_dominated ← true
9 end

10 RSU (new,ref)← ∅
11 RSL(new,ref)← ∅
12 retrieve the position object of ref from H
13 for i := 1 to : M do
14 initialize iterator it to the position of ref in listi
15 if fi(new) = fi(ref) then
16 insert new before or after it
17 if fi(new) < fi(ref) then
18 increment it to the last position where

fi(*it) = fi(ref)
19 while fi(*it) ≥ fi(new) do
20 insert *it into RSL(new,ref)
21 decrement it
22 end
23 insert new right after it
24 if fi(new) > fi(ref) then
25 decrement it to the last position where

fi(*it) = fi(ref)
26 while fi(*it) ≤ fi(new) do
27 insert *it into RSU (new,ref)
28 increment it
29 end
30 insert new right before it
31 end
32 end
33 insert position object of new into H
34 forall the a ∈ RSL(new,ref) do
35 if new dominates a then
36 remove a from the archive
37 insert a into R
38 new_non_dominated ← true
39 end
40 end
41 if new_non_dominated then
42 return R
43 end
44 forall the a ∈ RSU (new,ref) do
45 if a dominates new then
46 remove new from the archive
47 insert new into R
48 return R
49 end
50 end
51 return R

Fig. 12. Insertion into the M-list.

Then we check if new dominates some individuals in the M-
list by comparing new to each individual in the lower reference
set. If we find such an individual, we remove it from the M-
list immediately (removal from M-list is fast as mentioned
above) and set the new_non_dominated flag. If there is
an individual that is dominated by new, that means that new
is not dominated by any individual in the entire M-list and we
can skip the following step.

Last of all we check if new is dominated by some individual
in the archive. We do this by comparing new to each individual
in the upper reference set.

3) Important programming details: We conclude this sub-
section with an important tip to implement an efficient M-list.

In the previous section we did not explain how to implement
the data structures symbolizing the reference sets. At first sight
this does not look like a significant problem. The most obvious
solution is to use a container that represents a mathematical
set. For example the std::set or std::unordered_set
data structure from the C++ standard library. In general, a
container that is implemented either as a sorted list or as a
hash-table. This would assure that
• We can perform insertions quickly
• We know if the item being inserted already is in the set
Using a computer program profiler5 we found out that the

operations involving insertions and traversal of reference sets
are critical to the performance of the entire algorithm.

Armed with this knowledge we tried to implement the
reference sets using several alternatives. We tried to use
programming classes which model the mathematical concept
of a set using either a hash-table or a red-black tree internally.6

We also tried our own implementation of hash-table with size
growing according to powers of two and linear probing collision
resolution.

Lastly we tried to implement the set as a simple array
based stack, while relaxing the unique entry property of a
mathematical set. If we insert a particular individual more than
once, it will be in the set more than once. This may happen if
an individual is between the new and ref in more than one
list in the M-list.

Surprisingly, the stack implementation outperformed all other
implementations in almost all instances. The additional cost of
having to compare some individuals for dominance more than
once was outweighed by the speed of the stack data structure.
Consequently, we perform all our experiments using the stack
data structure.

F. K-d trees

1) Nearest neighbor problem: In this section we turn
ourselves to the question of selecting a reference individual.
We understand intuitively that if the reference individual is
close to the new individual, the reference set induced will be
small and we will not have much work comparing the new

5Callgrind.
6We tried the std::set and std::unordered_set containers from

the gcc 4.8.1 implementation of the C++ Standard Library. The std::set is
implemented as a red-black tree and std::unordered_set is implemented
as a hash-table with a prime size and separate chaining collision resolution.
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individual to all individuals in it. In our previous work [1] we
provide experimental justification for this. Therefore we try
to choose the reference individual as close as possible to the
newly inserted individual.

Formally, we define this problem of finding a close reference
individual as follows. Given an M-list ML, a metric d and
an individual being inserted new /∈ ML we hope to find ref
satisfying:

ref ∈ ML such that ∀a ∈ ML : d(ref,new) ≤ d(a,new)

For example, if the metric is the L1-distance in the objective
space, i.e., d(x, y) :=

∑M
i=1|fi(x)− fi(y)|, this measures the

sum of widths of the reference areas in each objective, as
illustrated in Fig. 6. Then, a reference point close to new w.r.t.
this metric tends to provide a small reference set. This task is
a well studied problem with name nearest neighbor search.

Importantly, our objective here is not to find out the nearest
individual in a strict manner, but a relatively close reference
point. Especially, we do not want to spend much more time
to find out the exact solution than to perform the operations
described in the previous section. Therefore, an approximation
approach to the nearest neighbor search is a good candidate
for our purpose.

We employ the K-d tree approach [19] to perform an
approximate nearest neighbor search. K-d tree is a hierarchical
data structure which supports fast nearest neighbor and
approximate nearest neighbor queries. The K-d tree structure
has been reported to have a good performance when the
dimension of the problem is small [20]. Dimensions until about
8 are considered very small in the nearest neighbor community,
whereas the MOEA community considers problems with more
than 4 objectives as many-objective. Therefore, we maintain a
K-d tree along the M-list.

We will not describe the general mechanism of the K-d tree
since there are many publications that provide an excellent
description (see e.g. [21]). We describe only the details of the
particular K-d tree implementation that we tested ourselves
and to which our experimental results apply.

2) Implementation details: With each insertion to the M-list
we need to perform an insertion into the K-d tree and the same
goes for removals. Because we need to use the K-d tree in
such a dynamic manner, we use a slightly modified version.
We keep the data only in the leaves of the tree. This results in
somewhat simpler removals and insertions into the tree.

The approximate nearest neighbor procedure proceeds ex-
actly as the standard exact nearest neighbor procedure, but
allows for only 4 evaluations of metric d. Once these 4
evaluations have been spent, the procedure returns the closest
individual found so far. We chose 4 evaluations ad hoc, since
it seemed to perform well in many problem instances.

3) Re-balancing the K-d tree: The major problem with using
K-d trees is that it is primarily a static data structure. That is,
it is not well suited for the dynamic character of the multi-
objective optimization. When many insertions and deletions
are performed, the tree tends to become unbalanced. To our
best knowledge there is no efficient method to detect the fact
that the tree is unbalanced and to perform the re-balancing.
Therefore we developed a heuristic to determine if the tree is

H
new

H
old

H
intersect

Original 
population

Population at a 
later stage

Fig. 13. Computing α in (7).

out of balance and if it is, we simply destroy it and construct
it again.

Our mechanism to detect the loss of balance of a K-d tree is
as follows. At the beginning of the algorithm, we compute the
bounding hyper-box of the population in the M-list (illustrated
in Fig. 13) and denote it by Hold. During optimization, we
periodically compute the bounding hyper-box Hnew of the
population which is currently in the M-list. Then we compute
the ratio of the volume of the intersection of these boxes to
their union:

α :=
vol(Hnew ∩Hold)

vol(Hnew ∪Hold)
. (7)

A value of α from (7) near 1 means that the boxes are almost
identical, while a value close to 0 means that they are quite
different. This can happen either by the box Hnew becoming
too small, too big, or moving away from Hold. If the value
drops bellow a predefined level (we have chosen 0.5 ad hoc),
we rebuild the tree from scratch and replace Hold by Hnew.

A nice feature of the α indicator in (7) is that α ∈ [0; 1]
and that it is invariant to the scaling of the axes.

G. M-front

There is another reason why we chose the K-d tree in
particular. As [19, p.101] suggests, the construction of the
K-d tree can get expensive because of the need to compute the
medians at each node to split the data uniformly. On the same
page, the author suggests pre-sorting the data with respect to
each dimension, in order to avoid the costly computation of the
medians. The M-list is a data structure where the data already
is sorted with respect to each dimension, which reduces the
computational cost even further. To express this affinity of
the M-list and K-d tree, we call the combined structure the
M-front.

An insertion into the M-front is described in Fig. 14. When
we insert new into the M-front, a reference individual is chosen
as the approximate nearest neighbor to new (line 1). new is
next inserted into both parts of the M-front, i.e. the M-list and
the K-d tree. The individuals that are removed from M-list
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Algorithm: Insertion into the M-front
Input: M-front internals: K-d tree K, M-list ML, new
Output: R - set of removed individuals from the M-front

1 ref← retrieve approximate nearest neighbor to new
using K

2 insert new into K
3 R← insert(ref, new) into ML
4 forall the a ∈ R do
5 remove a from K
6 end
7 return R

Fig. 14. Insertion into the M-front.

(they may contain also new) must be also removed from the
K-d tree (line 5).

We can also remove arbitrary individuals from the M-front
by removing them from the M-list and from the K-d tree.
This is particularly useful when we want to prune the set
of non-dominated individuals. Here one can take advantage
of the M-front internals. For example, one method to prune
non-dominated individuals is the partitioned quasi-random
selection (PQRS) [11]. The computational cost of this procedure
is decreased if the population is sorted with respect to each
objective. Hence the M-list can be used to decrease the cost
of PQRS. Similarly, one can take advantage of the K-d tree,
which is a data structure suitable for efficient nearest neighbor
computation, to reduce the computational cost of pruning
procedures which perform these computations, such as the
M nearest neighbors pruning [22].

Source code for all mentioned data structures can be found
in [23].

IV. COMPUTATIONAL COMPLEXITY

In this section we theoretically explore the computational
complexity, i.e. the number of required operations, especially
floating point number comparisons, in our algorithm. Since
the core of our method is the insertion into the M-front, we
investigate the computational complexity of one such insertion.

A. Best and worst case complexity of our method

The M-front is composed of two data structures, namely
the M-list and the K-d tree. Each insertion starts with the
retrieval of the reference individual from the K-d tree. If the
K-d tree containing N items is balanced, then approximate
nearest neighbor queries can be performed in O(ln(N)) time.
Therefore if we restrict our usage of the K-d tree to computing
just the approximate nearest neighbors, the cost of retrieving
the reference individual is O(ln(N)). After the reference
individual is retrieved, it is compared to the newly inserted
individual for dominance. If the reference individual dominates
the newly inserted individual, the insertion is aborted, leaving
the computational cost at O(ln(N)). If the reference individual
does not dominate the new individual, its position object is
retrieved from the hash-table in the M-list. This operation is
O(1) in the average case and O(N) in the worst case.

f
2

f
1

New individuals

Individuals in the archive

1.

2.

3.
4.

5.

Fig. 15. Sequence of insertions with empty reference sets.

Afterwards, the reference sets are constructed while inserting
the new individual into the linked lists of the M-list. There is a
non negligible chance that the upper and lower reference sets
are empty or contain only the reference individual itself. In this
case there are no more operations needed. This is especially
likely if there is a reference individual which is particularly
closer to the new individual than the other individuals in the
M-front. We can see an illustration of a sequence of 5 best case
insertions in Fig. 15. Each time the new individual is paired
with its reference individual in the archive. All insertions yield
empty upper and lower reference sets. Intuitively we see that
the probability of such a sequence is not infinitesimally small,
but it may actually happen. Especially if the underlying MOEA
is evolving the population by perturbing one individual at a
time. The individual being perturbed may serve as a reference
individual, saving thus the cost of the K-d tree.

In the worst case, the reference sets contain all the individuals
in the archive. In this case there are N domination comparisons
needed, i.e. O(MN) floating point number comparisons, and
the complexity is the same as the brute force comparison.

An insertion could cause the K-d tree to be considered
unbalanced. In that case it needs to be rebuilt. The cost of
rebuilding a K-d tree is O(MN ln(N)) [19]. However if the
tree is checked for imbalance periodically each T insertions
and if T ≥ N then there is at most 1 rebuilding of the tree
for N insertions. Then the average cost for one insertion is
O(M ln(N)) which does not change the worst case complexity.

B. Average case complexity of our method

We model the average case complexity of our method
using the concept of random variables from probability theory.
Similarly as when establishing the best case complexity, we
estimate the computational complexity of inserting a single
individual into an M-front archive. We model the population
using random vectors. Therefore the complexity that we
estimate is itself a random variable. We estimate its expected
value and asymptotic properties.

We try to use familiar naming conventions but from now
on, we deal with random individuals.
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Definition 2 (Random individual). A random individual a is
the ordered pair (ida, Ya) where:

1) ida ∈ N is the identifier,
2) Ya = (ya,1, . . . , ya,M ) ∈ RM is a random vector.

The vector Ya is supposed to model the objective vector. In
this section we are not interested in the decision vectors at all.
We are just trying to model a snapshot of the population in a
MOEA.

The most important property of an M-front is that all the
individuals within are mutually non-dominated. We model the
population of the M-front using the following definition:

Definition 3 (Random front). Let RF = {a1, . . . , an} be a
set of random individuals. If the probability that there are
individuals ai, aj ∈ RF such that ai dominates aj is zero,
then we call RF a random front.

We shall estimate the computational complexity of inserting
an individual into an M-front whose population is a certain
specific type of a random front.

Definition 4 (Uniform front). Let Pf : RM−1 → R be a
function that is strictly decreasing with respect to each variable.

Let RFPf = {a1, . . . , an} be a set of random individuals
whose objective vectors are independent identically distributed
(i.i.d.) random vectors with the following distribution: Each
vector’s first M − 1 components are i.i.d. uniform random
variables on [0; 1]. The last component is the value of function
Pf of the first M − 1 components

Y = (y1, . . . , yM−1,Pf (y1, . . . , yM−1)) .

We call RFPf a uniform front with shape Pf .

The mutual non-domination of individuals is guaranteed
thanks to the decreasing nature of the shape function Pf , as
is formally described in the following theorem.

Theorem 2 (Correctness of uniform front). A uniform front is
indeed a random front in the sense of Definition 3.

The proof can be found in the Appendix A.
The uniform random front models the individuals in an

M-front. Let us now investigate the computational cost of
an insertion into such an M-front. As we explained earlier,
this cost is proportional to the number of individuals in the
reference sets. Therefore we estimate the expected cardinality
of the reference sets. In order to keep things as simple as
possible, we shall assume that the inserted individual is in the
center of the uniform random front. That is:

Ynew = (0.5, . . . , 0.5,Pf (0.5, . . . , 0.5)) .

Furthermore we shall add some assumptions on the shape
function of the front Pf .

Theorem 3 (Expected cardinality of the reference sets). Let
Pf : RM−1 → R be a

• Lipschitz function with respect to the maximum metric
with constant L, i.e. ∀X,Y ∈ RM−1; |Pf (X)−Pf (Y )| ≤
L ·maxi∈J1;M−1K|xi − yi|, and

• there exists an S ∈ R such that the probability density
function fPf of the random variable Pf (y1, . . . , yM−1)
where yi ∼ U [0; 1] are i.i.d., is bounded by S.

Let dM−1 : RM × RM 7→ [0;∞) be the maximum pseudo-
metric defined by:

dM−1(X,Y ) := max
i∈J1;M−1K

|xi − yi| .

Let RFPf be a uniform random front with shape Pf containing
N individuals, new be a newly inserted individual with
objective vector

Ynew = (0.5, . . . , 0.5,Pf (0.5, . . . , 0.5))

and ref be a reference individual chosen as the closest
individual to new with respect to dM−1.

Let the number of individuals which fall either into the upper
or lower reference sets denoted by CM,N . Then E[CM,N ] exists
for all M, N ∈ N, M > 1, and

E[CM,N ] ∈ O(MN1− 1
M−1 ) (8)

for a fixed M .

The proof can be found in Appendix B.
The requirements imposed on Pf may seem complicated

and heavy handed but we do it for the sake of simplicity of the
proof. One example of such a function is an arbitrary linear
function with all coefficients negative.

Since each dominance comparison has the computational
cost of O(M), we see that the expected computational cost of
inserting into an M-front is

O(M2N1− 1
M−1 ) (9)

floating point comparisons.

C. Summary

We have estimated the computational cost of insertions into
the M-front. The most costly operation is comparing against
individuals in the reference sets. Therefore we were concerned
with the cardinality of the reference sets.

If we look at the algorithm in Fig. 2 and assume overnondom-
ination, there are approximately the same number of individuals
in the M-front as there are individuals in the initial population.
Therefore the N in both contexts is roughly the same. In
order to be able to compare the computational complexity to
an algorithm that performs non-dominated sorting, we shall
multiply the costs of inserting one individual (9) by N , since
in the course of one generation of algorithm in Fig. 2 there are
N insertions. We summarize the computational complexities in
Table I. As we see in Table I, our approach scales better with
respect to M than Jensen-Fortin’s algorithm in the average
case. On the other hand Jensen-Fortin’s algorithm scales better
in terms of N for a fixed M .

V. COMPARISON WITH JENSEN-FORTIN’S METHOD

Jensen-Fortin’s algorithm [7] [8] is one of the fastest non-
dominated sorting algorithms so far. Our algorithm is different
on many levels other than speed. In this section we shall go
into depth on all the details in which the two algorithms differ.
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TABLE I
COMPUTATIONAL COMPLEXITIES WHERE

N IS THE POPULATION SIZE AND M IS THE DIMENSION.

Jensen-Fortin M-front
Best case O(MN) O(MN) or O(MN ln(N)) using

the K-d tree

Average case O(N lnM−1(N)) O(M2N
2− 1

M−1 )

Worst case O(MN2) O(MN2)

M
N

M
N/2

M
N/2

M-1
N

M-1
N/2

M
N/4

M-1
N/2

M
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M – number of objectives
N – number of individuals
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Fig. 16. Jensen-Fortin’s algorithm.

A. Description of Jensen-Fortin’s algorithm

We mentioned Jensen-Fortin’s algorithm in the introduction.
Here we shall describe it in a little more detail. Jensen-Fortin’s
algorithm is based on Kung’s algorithm [6]. This algorithm
computes the set of non-dominated individuals in a population.
Instead of repeatedly using Kung’s algorithm to compute non-
dominated fronts one by one, Jensen chose a cleaner approach
which constructs all non-dominated fronts in one run.

Unfortunately the algorithm did not work well in the general
case where more than one individual has the same value
for some objective. This was recently fixed by Fortin et al.
From now on, we shall work only with the Fortin’s version
of the algorithm. We call this algorithm the Jensen-Fortin’s
algorithm. The algorithm uses a divide-and-conquer strategy.
This is illustrated in Fig. 16.

In the notation of Fortin et al., the algorithm has two main
procedures, Helper_A and Helper_B, and two splitting
procedures, Split_A and Split_B. After some preprocess-
ing, the algorithm calls the Helper_A procedure which does
essentially all the work. This procedure splits the problem
into problems of smaller size and merges the results using the
Helper_B procedure which is itself a recursive divide-and-
conquer algorithm. Helper_B splits the problem again using
the Split_B procedure. The problem is further divided until
either the dimension M or the problem size N gets reduced
to 2, which are handled as final cases.

B. Conceptual comparison

The main difference between the two methods is that Jensen’s
method is a procedure while our method is essentially a data
structure. Our data structure keeps track of the non-dominated
individuals at all times and this knowledge is updated with
each change in the population. This is not possible with
Jensen’s algorithm. Once a single individual changes the entire
computation needs to be executed again.

The advantage of Jensen’s method is that it computes all
the non-dominated fronts, while our method computes only
those fronts that are needed by the trimming procedure.

C. Computational speed

In the section on experimental results we show that Jensen’s
algorithm performs well on large populations, while our
algorithm works well with a large number of objectives.

Another main difference is that Jensen’s algorithm performs
the entire computation at once, while our method allows the
cost to be distributed along the entire run of the algorithm. As
soon as an individual’s objective value is evaluated, we can
insert it into the M-front.

D. Flexibility

The Jensen’s algorithm is fairly difficult to modify. It took
10 years since the original publication by Jensen for someone
to undertake the task to generalize the algorithm to be able
to handle the case of multiple individuals sharing the same
objective value. No other modifications are known.

On the other hand, the core of our algorithm is just the
M-list. The way in which reference individuals are chosen
depends entirely on the user. The user is free to choose any
strategy to select the reference individual. There are probably
many data structures more sophisticated than the K-d tree.
Some algorithms compute the nearest neighbor in the objective
space for their own purposes. This computation can be reused
in inserting an individual into the M-list. A notable example
of such an algorithm is the DEMO/obj algorithm [4]. Other
algorithms perturb the population one individual at a time. In
this case the unperturbed individual is likely to be close to the
perturbed one, and may serve as the reference individual. One
example of such a MOEA is differential evolution. We used
this approach in our previous work [1].

The M-list itself can be modified to use a different type of
dominance, such as the ε-dominance. This may be also possible
with Jensen’s algorithm, but it is not very straightforward.

Lastly, the M-front is a standalone archive which can be
used in algorithms such as [24] that store their non-dominated
individuals.

E. Parallelization

The Helper_A procedure splits the problem into three
subproblems which need to be solved in a particular order.
Even though divide-and-conquer algorithms are usually easy
to parallelize, there is a sequential dependence in Helper_A.

The three problems created by Helper_B, on the other
hand, can be executed in any order. Therefore we suppose that
Jensen’s algorithm can be easily parallelized.
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TABLE II
COMPARISON OF THE JENSEN-FORTIN’S ALGORITHM AND OUR METHOD.

Jensen-Fortin M-front

Average complexity O(N lnM−1(N)) O(M2N
2− 1

M−1 )

Best performance on High N High M
Main concept Procedure Data structure

Computes all fronts Yes No
Flexibility No Yes

Parallelization Yes Yes

Our algorithm performs many insertions and removals
each of which locks the M-front. Parallelization within each
transaction is possible but because the insertion is a relatively
small operation we are not sure if significant speedup can be
achieved.

F. Summary

The differences between Jensen-Fortin’s algorithm and our
method are summarized in Table II.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

In order to test the performance of our algorithm we have
implemented the GDE3 (Generalized Differential Evolution)
MOEA [3] using three non-dominated sorting methods:
• Our method (M-front)
• Jensen-Fortin’s algorithm
• Deb’s fast non-dominated sorting

The three algorithms produce identical outputs. Only thing that
is different is the speed. We ran the algorithm on a variety of
DTLZ1 [25] and WFG9 [5] problems.

We chose WFG9 in particular because it is multi-modal and
non-separable and therefore we hope that it resembles a large
number of real world problems.

We chose DTLZ1 because its objective functions are rel-
atively steep. This means that the evaluation of the initial
randomly initialized population is quite far from the true Pareto
front. The randomly initialized population has objective values
in the ranges of hundreds while the true Pareto front is a
simplex within the hyper-box [0; 0.5]M . During the run of the
MOEA, the population needs to travel a significant distance.
This should test our K-d tree re-balancing mechanism.

The GDE3 algorithm has two main parameters. The crossover
operator and the scaling factor F . We have chosen exponential
crossover and a value of 0.2 for both F and the crossover
probability Cr. We chose the parameters according to empirical
results by Kukkonen [26] and after an informal off-line
calibration of the algorithm.

We ran experiments with various initial population sizes N
and various numbers of objectives M . The population sizes
start at 50 individuals and increase in an almost geometric
progression up to 8000 individuals. We chose such big
populations to clearly demonstrate at which population size
the asymptotic superiority of Jensen-Fortin’s algorithm prevails
and our method is outperformed. Large population sizes are

TABLE III
EXPERIMENTAL SETUP.

Crossover exponential
Cr 0.2
F 0.2

initial population size N 50, 125, 250, 500, 1000, 2000, 4000, 8000
number of objectives M 3, 4, 5, 6, 7, 8
number of generations 500

number of runs 10
number of variables 15

especially useful for many objective problems where the
number of individuals needed to approximate the Pareto front
with a fixed precision grows exponentially with the number of
objectives [18].

The number of objectives ranges from 3 to 8, while the
number of variables is always 15. For each configuration we
ran the algorithm for 500 generations, 10 times with different
random seeds, and averaged the results. The experimental setup
is summarized in Table III.

We implemented all algorithms in C++ and compiled
them using the gcc 4.8.1 compiler using the aggressive com-
piler optimization flag -O2. We ran the experiments on a
desktop PC with an Intel Core i7-2600 CPU @ 3.40GHz x 8
processor running the Ubuntu 13.04 operating system with
Linux 3.8.0-19.29 kernel. We ran the experiments one at a
time, with no other programs running.

B. Comparison with Jensen-Fortin’s algorithm

1) Total computation time: First we measured the total wall
clock computation time spent just on non-dominated sorting
using the C++11 <chrono> library. Instead of presenting
the absolute times, which we believe to be more susceptible
to change from platform to platform, we present ratios of
the average time used by Jensen-Fortin’s algorithm divided
by the average time used by our method. Since we have the
same number of runs for both algorithms, the presented ratios
become:

ratio =

∑10
k=1 JFk∑10
k=1 MFk

where JF1, . . . , JF10 are the times taken by Jensen-Fortin’s
algorithm and MF1, . . . ,MF10 are the times taken by the
M-front method. All results are summarized in Table IV. All
results have been tested for significance using the Wilcoxon
signed rank test on the significance level 0.05. A number in
boldface means that our method significantly outperformed the
competitor, while a number in italics means that our method has
been significantly outperformed for that particular configuration.
A number without boldface or italics means that the results
were not significantly different. We use the same notation in
Table V, where we compare our results with fast non-dominated
sorting. Numbers greater than one mean that our method is
faster in this instance. For the sake of perspective, we provide
the average times used by Jensen-Fortin’s algorithm for the
most complex and least complex problem setup in Table VI.
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TABLE IV
RATIO OF AVERAGES JENSEN-FORTIN

M-FRONT
.

WFG9 DTLZ1
M N = 50 125 250 500 1000 2000 4000 8000 N = 50 125 250 500 1000 2000 4000 8000

Total non-dominated sorting time (ratios)

8 3.13 3.50 2.79 2.54 2.05 1.57 1.10 0.56 1.96 2.97 2.53 2.03 1.40 0.90 0.57 0.29
7 2.79 3.77 3.08 2.67 2.28 1.72 1.21 0.59 2.20 3.97 3.27 2.61 1.64 1.11 0.65 0.33
6 2.79 3.61 3.36 2.98 2.41 1.86 1.29 0.68 2.32 5.08 4.23 3.23 1.94 1.15 0.59 0.34
5 2.96 3.78 3.17 2.78 2.33 1.87 1.36 0.76 2.44 5.30 4.40 2.78 1.69 0.94 0.52 0.32
4 2.27 2.70 2.23 2.10 1.82 1.58 1.14 0.68 1.91 3.93 2.89 1.89 1.10 0.62 0.37 0.23
3 1.00 1.29 1.09 0.96 0.82 0.69 0.44 0.28 1.11 1.48 1.01 0.82 0.57 0.35 0.21 0.13

Non-dominated sorting time in the last generation (ratios)

8 2.38 3.68 2.87 2.60 2.17 1.68 1.14 0.59 2.15 3.66 2.24 2.30 1.47 0.89 0.62 0.32
7 3.30 4.61 3.04 2.72 2.33 1.78 1.24 0.61 2.07 4.27 3.36 2.67 1.78 1.04 0.67 0.30
6 2.15 4.07 3.45 3.08 2.45 1.89 1.33 0.70 2.17 4.28 4.57 3.18 1.91 1.16 0.58 0.34
5 2.64 3.42 3.10 2.67 2.31 1.87 1.41 0.79 2.01 4.03 4.00 2.70 1.96 1.19 0.74 0.40
4 2.94 3.01 2.21 2.01 1.79 1.69 1.27 0.79 1.65 3.05 3.11 2.58 1.88 1.26 0.81 0.51
3 0.77 1.37 1.04 1.04 0.89 0.86 0.62 0.48 0.90 1.58 1.26 1.32 1.01 0.82 0.54 0.42
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Fig. 17. Ratio of average total non-dominated sorting time: Jensen-Fortin
M-front .

The numbers in parentheses are the standard deviations across
the 10 runs.

We can see that for 3 objectives the Jensen-Fortin’s method
is faster in almost all instances. For 4 objectives and higher
our method catches up and outperforms the Jensen-Fortin’s
algorithm for all population sizes up to 4000 individuals. There
the asymptotic superiority of Jensen-Fortin’s algorithm becomes
apparent.

The smaller the population the better our method performs
in comparison to Jensen-Fortin’s algorithm. However, this trend
breaks down for 50 individuals. This is probably due to the
fixed cost that the K-d tree carries along.

The reader should note that the initial population sizes do not
correspond exactly to the size of the domination sorting problem
being solved. The GDE3 algorithm produces a population that
has somewhere between N and 2N individuals, which needs to
be trimmed to N individuals. Therefore the size of the problem
being solved is slightly bigger.

We can interpolate our experimental results so that the pattern

is more visible. In Fig. 17 we can see a contour plot which
interpolates our experimental results. Population sizes in our
experiments grow exponentially, but Fig. 17 tries to give us a
better understanding of the overall pattern. The isocurve for
1, that is the hypothetical curve on which the two algorithms
perform with the same speed, is shown in bold black.

When we look at the results for DTLZ1 in Table IV we see
a similar pattern. The asymptotic superiority of Jensen-Fortin’s
method is immediately visible. Moreover we see that for large
populations the results are more favorable for Jensen-Fortin’s
method. Already for 2000 individuals the performance of the
two algorithms are tied, while for 4000 and 8000 individuals
Jensen-Fortin’s algorithm is faster. On the other hand, for small
population sizes and high number of objectives, our method is
faster.

2) Computation time in the last generation: On first sight
it may seem strange that the results for 3 objectives are
so unfavorable for our method. We shall now examine this
situation in detail.
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Fig. 18. Influence of overnondomination on computational speed of our
method for DTLZ1 - 500 individuals - 3 objectives. All series are surrounded
by a band of ±2 standard deviations.

Let us look at the computational time spent on non-
dominated sorting in each generation. In Fig. 18a we can see
the averaged computational times for the DTLZ1 problem with
3 objectives and 500 individuals. Our method is significantly
slower, but around generation 200 it accelerates and becomes
faster than Jensen-Fortin’s algorithm. The reason for this
behavior is that the proportion of non-dominated individuals is
relatively small in the first 200 generations. We can see this in
the lower part of Fig. 18b. When the number of non-dominated
individuals is small, our algorithm needs to resort to using
the algorithm in Fig. 4 to determine additional fronts. Once
the number of non-dominated individuals is greater than the
initial population size, 500 individuals in this case, the GDE3
algorithm has enough non-dominated individuals in the M-front
and does not need to invoke the auxiliary algorithm (Fig. 4)
to compute an additional non-dominated front.

We can examine how strong this effect is, by comparing
the average computational times only in the last generation.
The intuition is that by the last generation the population has
almost converged and the proportion of the non-dominated
individuals is high.

TABLE VI
AVERAGE ABSOLUTE TIME TAKEN BY JENSEN-FORTIN’S ALGORITHM FOR

THE MOST COMPLEX AND LEAST COMPLEX PROBLEM SETUP
(MILLISECONDS).

Total

M = 3, N = 50 M = 8, N = 8000

WFG9 52.7061 (0.818) 615 008 (11619.6)
DTLZ1 26.5054 (0.383) 259 788 (6472.1)

In the last generation

WFG9 0.1024 (0.0045) 1279.94 (36.14)
DTLZ1 0.0522 (0.0039) 581.20 (18.98)

These results are summarized in the bottom of Table IV.
By comparing the data for the last generation to the total
data we can see that the most significant differences are
visible for 3 objectives. The reason is that for 3 objectives the
overnondomination phenomenon is not yet present.

C. Comparison with fast non-dominated sorting

Here we present only the results for the WFG9 algorithm in
order to save space, since the core of our experimental section
is the comparison with Jensen-Fortin’s algorithm. The results
for DTLZ1 were slightly worse, but similar to those for WFG9.
This can be inferred from looking at Table IV. We choose the
same methodology of presenting our data as when comparing
with Jensen-Fortin’s algorithm.

In Table V we see that our algorithm outperforms the
fast non-dominated sorting in all problem instances. With
few exceptions the relative performance of our algorithm
increases with population size and decreases with number
of objectives. This is in accordance with our estimation of
average computational complexity. To quantify the importance
of overnondomination, we also present the comparison of
computational times for the last generation. By comparing
these results with the total times in Table V, we can see that
the biggest difference is for 3 objectives. This is consistent
with our previous analysis.

The fast non-dominated sorting algorithm performs domina-
tion comparisons between pairs of individuals. Our algorithm
also performs domination comparisons when it compares the
inserted individual to the individuals in the reference sets. We
can count the number of these comparisons which are executed
during the entire run of the optimizer. This way we get a
measure which is independent from the underlying hardware
and programming language, since all implementations should
perform exactly the same steps.

We can see the comparison in terms of domination com-
parisons in the bottom part of Table V. We can see that
these results are strongly correlated to the results in terms
of computational time. This favors the hypothesis that a major
part of the computational time is consumed by domination
comparisons.

It is also interesting to see that the results in terms of
domination comparisons are more favorable for our algorithm
than the results in terms of computational time. In other words
our algorithm does not reach its full potential. For example
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TABLE V
RATIO OF AVERAGES FAST NON-DOMINATED SORTING

M-FRONT
FOR THE WFG9 PROBLEM.

Total non-dominated sorting time (ratios) Non-dominated sorting time in the last generation (ratios)
M N = 50 125 250 500 1000 2000 4000 8000 N = 50 125 250 500 1000 2000 4000 8000

8 1.30 2.06 2.38 3.23 3.81 4.11 4.17 3.54 0.97 1.99 2.34 3.26 3.92 4.29 4.25 3.52
7 1.23 2.37 2.80 3.65 4.75 5.35 5.49 4.53 1.43 2.70 2.66 3.64 4.77 5.43 5.58 4.54
6 1.33 2.51 3.43 4.82 6.19 7.40 7.94 7.09 1.03 2.66 3.38 4.89 6.22 7.52 8.15 7.11
5 1.59 3.18 4.11 6.05 8.61 11.36 13.69 13.28 1.37 2.80 4.00 5.78 8.57 11.40 13.92 13.66
4 1.69 3.60 5.04 8.65 13.64 20.53 26.39 28.10 2.11 3.81 4.94 8.26 13.58 22.22 29.45 32.35
3 1.78 5.11 7.94 13.56 21.89 33.49 37.80 43.58 1.38 5.64 7.80 15.22 24.80 42.93 55.14 75.79

Total number of domination comparisons (ratios) Number of domination comparisons in the last generation (ratios)

8 3.8 5.1 5.6 5.9 6.4 6.8 7.2 7.6 4.3 5.5 5.9 6.2 6.7 7.1 7.3 7.7
7 4.6 6.4 7.2 7.9 8.5 9.1 9.6 10.1 5.1 6.9 7.8 8.3 8.6 9.2 9.7 10.3
6 6.0 8.7 10.0 11.0 12.0 13.1 14.3 15.8 6.3 9.3 10.4 11.2 12.2 13.3 14.6 16.1
5 8.2 12.3 15.0 17.6 20.2 23.1 26.3 29.6 8.6 12.3 16.2 17.7 20.6 23.8 27.6 31.5
4 11.4 20.5 29.8 37.2 44.9 51.0 57.9 63.9 11.8 20.3 32.3 40.2 50.6 62.2 74.7 89.9
3 22.4 46.4 68.8 80.3 89.9 90.1 89.5 88.7 25.0 50.7 88.3 125.2 178.9 240.8 341.8 469.6

with 3 objectives and 1000 individuals our algorithm requires
89.9 times fewer domination comparisons, but overall it is
only 21.89 times faster. This is caused by all the additional
data structures that our algorithm needs to maintain. This
includes primarily the K-d tree, but also the sorted lists, the
reference sets, and the hash-table. The results for the number of
dominance comparisons can be improved using exact nearest
neighbor computation within the M-front.

To see the importance of overnondomination in our algorithm
we provide the ratios of domination comparisons needed in the
last generation in the bottom right part of Table V. Again the
differences between the total numbers of domination compar-
isons and domination comparisons in the last generation are
most pronounced for 3 objectives, where the overnondomination
is weakest.

D. Confirmation of theoretical results

In the chapter on computational complexity, we tried to
model the population in an M-front using random vectors and
then use the techniques from the theory of probability to model
the computational cost of operations on the M-front. During
this modeling, we have made a number of assumptions on
the distribution of the individuals in the population. These
assumptions are relatively simple in order to make the proofs
of our theorems simple. Now we shall confront this model to
the experimental data.

We have shown that an average insertion into the M-
front needs O(MN1− 1

M−1 ) domination comparisons where
N is the number of individuals in the M-front. Assuming
overnondomination, there are roughly as many individuals in
the M-front as is the initial population size. We can try to
substitute the initial population size in our experimental data
for N .

The number of insertions in one generation is exactly the
same as the initial population size. Therefore the computational
cost is roughly O(MN2− 1

M−1 ) domination comparisons, where
N is the initial population size.

TABLE VII
FITTING OF CURVE f(N) = αNβ TO EXPERIMENTAL DATA:

NUMBER OF DOMINATION COMPARISONS IN THE LAST GENERATION
(WFG9).

M β theoretical β estimate α estimate

8 1.857 1.902 1.170
7 1.833 1.890 0.978
6 1.800 1.848 0.923
5 1.750 1.768 0.958
4 1.667 1.625 1.122
3 1.500 1.442 1.095

For a fixed M this gives the power function:

f(N) = αNβ . (10)

We tried to fit the general curve given by (10) to our
experimental results on the WFG9 problem using the least
squares method. In almost all cases the approximation was
appropriate. First let us look at the data for the number
of domination comparisons in the last generation which is
presented in Table VII.

We can see that the estimated β coefficients are not very far
from their theoretical counterparts. There is a slight tendency for
the experimental coefficients to be higher. On the other hand the
(less important) α coefficients seem to be more or less constant
with respect to M . We believe that this is due to the fact that
we used the maximum metric in our theoretical computation,
but in experiments we used the more strict Manhattan metric.

Next we present the comparison in terms of actual wall clock
time. The comparison of fitted and theoretical coefficients for
the elapsed time in the last generation is in Table VIII.

Here we see that the β coefficients are slightly underesti-
mated for all values of M . Nevertheless, the theoretical and
estimated coefficients follow a similar pattern as we increase
the number of objectives.
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TABLE VIII
FITTING OF CURVE f(N) = αNβ TO EXPERIMENTAL DATA:

TIME ELAPSED IN THE LAST GENERATION (MICROSECONDS) (WFG9).

M β theoretical β estimate α estimate

8 1.857 1.818 0.111
7 1.833 1.832 0.078
6 1.800 1.704 0.145
5 1.750 1.607 0.196
4 1.667 1.503 0.226
3 1.500 1.304 0.500

VII. CONCLUSION

We have presented a new method to decrease the cost of
non-dominated sorting. The main idea is to use a special
data structure which holds and updates the knowledge of non-
dominated individuals during the run of a MOEA. We have
provided one such data structure which we call the M-front.

Jensen-Fortin’s algorithm is the latest, and in terms of com-
putational complexity, fastest algorithm. We have demonstrated
that although the M-front does not provide an improvement
in terms of average computational complexity, it is faster
than Jensen-Fortin’s algorithm on some problems for a broad
range of population sizes and numbers of objectives. For very
big populations the asymptotic superiority of Jensen-Fortin’s
algorithm eventually prevails but our algorithm can perform
faster up to a fairly big population size (approximately 4000
individuals). Besides that, our algorithm scales very well with
the number of objectives. This is because our algorithm uses
the fact that a large proportion of the population tends to be
non-dominated in such instances to its advantage.

All performance results aside, an important advantage of
our method is that the non-dominated individuals are known
at all times. If one individual changes, the change in the
non-dominated front is immediately recorded. The core of our
algorithm is the M-front which can be reused as a cost-effective
data structure for MOEAs which archive their non-dominated
individuals.

In future we should explore different implementations of
the fast archive. An implementation using segment trees [19]
seems to be a promising candidate. Also, replacing the K-d
tree in the M-front with a more sophisticated nearest neighbor
data structure may bring further improvement.
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APPENDIX A
PROOF OF THEOREM 2

Proof: Suppose that we have two individuals a, b ∈ RFPf ,
whose objective values are:

Ya = (ya,1, ya,2, . . . , ya,M−1,Pf (ya,1, ya,2, . . . , ya,M−1))

Yb = (yb,1, yb,2, . . . , yb,M−1,Pf (yb,1, yb,2, . . . , yb,M−1))

For a to dominate b it is necessary that ya,i ≤ yb,i for all i
and ya,j < yb,j for at least one j, for i, j ∈ J1;MK. However,
if there is such a j < M we have

ya,M = Pf (ya,1, . . . , ya,M−1)>Pf (yb,1, . . . , yb,M−1) = yb,M

and if there is not a such j < M , meaning ya,i = yb,i for all
i < M , it implies

ya,M = Pf (ya,1, . . . , ya,M−1) = yb,M .

Hence a cannot dominate b. This ends the proof.

APPENDIX B
PROOF OF THEOREM 3

We shall need the following three lemmas in our proof.

Lemma 1 (First order statistic). Let x1, . . . , xn be i.i.d. random
variables and F be the cumulative distribution function (cdf)
of these variables. Then the cdf of the random variable

xmin := min(x1, . . . , xn) (11)

is given by:

Fmin(x) = 1− (1− F (x))n . (12)

The xmin from (11) is called a first order statistic. More
information on order statistics can be found in [27].

Lemma 2 (Expected distance of closest point). Let
X1, . . . , XN be i.i.d. random vectors with uniform distribution
on [0; 1]M . Let Xmin denote the random vector which is closest
to the center c = (0.5, 0.5, . . . , 0.5) of the hyper-box [0; 1]M

with respect to the maximum metric d. Then, the expected
distance of Xmin from the center c,

DM,N := E[d(Xmin, c)] , (13)

can be expressed in a closed form as:

DM,N =
N

2
B(N, 1 +

1

M
) , (14)

where B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt is the beta function.

Proof: Let us first construct the cumulative distribution
function (cdf) F1 for the distance d(Xi, c) of an arbitrary Xi

from c. By definition, the value of a cdf in x ∈ R is the
probability that the random variable is smaller than x. The set
of all vectors whose distance to c is less than x with respect
to the maximum measure forms a cube with edge length of
2x. Then, since Xi ∼ U [0; 1]M , the probability of Xi falling
into such a cube is equal to the volume of the cube, namely
(2x)M . That is, F1(x) = (2x)M for x ∈ [0; 0.5].

Then, since the distance of the closest individual to c is in
fact the minimum of the distances, we have from (12) that the
cdf of d(Xmin, c) is

FN (x) = 1− (1− (2x)M )N for any x ∈ [0; 0.5].
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Since d(Xmin, c) is nonnegative, its expectation is computed
by

DM,N =

∫ 1/2

0

(1− FN (x))dx =

∫ 1/2

0

(1− (2x)M )Ndx

=
1

2M

∫ 1

0

(1− t)N t 1
M−1dt =

1

2M
B(N + 1,

1

M
)

=
N

2
B(N,

1

M
+ 1) .

This completes the proof.
The asymptotic properties of this expected distance are

summarized in the following theorem:

Lemma 3 (Asymptotic properties of DM,N ). Let DM,N be
the expected distance from (13). Then for any M ≥ 1:

lim
N→∞

N
1
MDM,N =

1

2
Γ(1 +

1

M
) . (15)

Here Γ is the Gamma function.

Proof: Note that

B(N,
1

M
+ 1) =

Γ(N)Γ( 1
M + 1)

Γ(N + 1
M + 1)

.

Using the asymptotic property of the Gamma function, derived
from Stirling’s formula:

lim
n→∞

Γ(n+ x)

nxΓ(n)
= 1, for any x ∈ R,

we have

N
1
MDM,N =

N
1
M +1

2
B(N,

1

M
+ 1)

=
N

1
M +1Γ(N)

Γ(N + 1
M + 1)

Γ( 1
M + 1)

2

N→∞−−−−→
Γ( 1

M + 1)

2
.

This ends the proof.
Now we are ready to prove Theorem 3.

Proof of Theorem 3: A random individual a ∈ RFPf

belongs to a reference set induced by ref and new iff the
following condition is satisfied for some i ∈ {1, 2, . . . ,M}:

ya,i ∈ [ynew,i; yref,i] or ya,i ∈ [yref,i; ynew,i]. (16)

Define sets

A(x):={y∈[0;1]M−1|∃i∈J1;M−1K, yi∈[0.5−x;0.5+x]}
B(x):=[Pf (0.5+x, . . . ,0.5+x);Pf (0.5−x, . . . ,0.5−x)]

and a random variable δ = dM−1(Yref, Ynew). Since
Pf is strictly decreasing w.r.t. each element and Ynew =
(0.5, . . . , 0.5,Pf (0.5, . . . , 0.5)), the reference area induced by
Yref is a subset of A(δ)×B(δ). Therefore, letting ČM,N denote
the number of individuals whose first M − 1 components exist
in A(δ) and ĈM,N denote the number of individuals whose last
component exists in B(δ), we have CM,N ≤ ČM,N + ĈM,N .
Since the inequality inherits when the expectation is taken, we
find

E[CM,N ] ≤ E[ČM,N ] + E[ĈM,N ] . (17)

Hence, it suffices to show the right-hand side is bounded by a
desired order.

First, we consider E[ČM,N ]. Let I{X} be the indicator
which is 1 if the event X happens and 0 otherwise. For the
simplicity of notation, we let Za be the first M−1 components
of a ∈ RFPf . Then,

E[ČM,N ] = E
[∑N

i=1 I{Zi ∈ A(δ)}
]

=
∑N
i=1E [I{Zi ∈ A(δ)}] .

Remember that ref = argmini∈J1;NK dM−1(Zi, Znew) and
δ = dM−1(Zref, Znew) = mini∈J1;NK dM−1(Zi, Znew). The
inside of the summation is then

E[I{Zi ∈ A(δ)}]
= E[I{i = ref}+ I{i 6= ref}I{Zi ∈ A(δ)}]
= 1/N + E[I{i 6= ref}I{Zi ∈ A(δ)}]
= 1/N + E[I{i 6= ref}I{Zi ∈ A(min

i∈J1;NK
dM−1(Zi, Znew))}]

= 1/N + E[I{i 6= ref}I{Zi ∈ A(min
j∈J1;NK\{i}

dM−1(Zj , Znew))}]

≤ 1/N + Pr[Zi ∈ A(min
j∈J1;NK\{i}

dM−1(Zj , Znew))] . (18)

For the last inequality we used E[I{X}I{Y }] ≤
E[I{X}]E[I{Y }] and E[I{X}] = Pr[X]. Note
that on the right-most side Zi is independent of
minj∈J1;NK\{i} dM−1(Zj , Znew). Since Zi is uniformly
distributed in [0; 1]M−1, given

δi = min
j∈J1;NK\{i}

dM−1(Yj , Ynew)

the above probability is the proportion of the volume of A(δi)
to [0; 1]M−1, which is bounded above by 2(M − 1)δi. Then,

E[ČM,N ] ≤ 1 + 2(M − 1)
∑N
i=1E[δi] . (19)

Next, we consider E[ĈM,N ]. For the simplicity of notation,
we let Wa be the last component of a ∈ RFPf . Then, By
definition

E[ĈM,N ] = E
[∑N

i=1 I{Wi ∈ B(δ)}
]

=
∑N
i=1E [I{Wi ∈ B(δ)}] .

Analogously to (18), we have

E [I{Wi ∈ B(δ)}] = 1/N + Pr[Wi ∈ B(δi)] .

Note that on the right-most side Wi is independent of δi. Given
δi, the above probability reads

Pr[Wi ∈ B(δi) | δi]

=
∫ Pf (0.5−δi,...,0.5−δi)
Pf (0.5+δi,...,0.5+δi)

fPf (w)dw

≤
∫ Pf (0.5−δi,...,0.5−δi)
Pf (0.5+δi,...,0.5+δi)

Sdw

= S|Pf (0.5− δi, . . . , 0.5− δi)− Pf (0.5 + δi, . . . , 0.5 + δi)|
≤ 2SLδi.

Taking the expectation over δi and plugging it into the above
inequalities we have

E[ĈM,N ] ≤ 1 + 2SL
∑N
i=1E[δi] . (20)
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With (17), (19) and (20) we have

E[CM,N ] ≤ 2 + 2((M − 1) + SL)
∑N
i=1E[δi] . (21)

Note that E[δi] is nothing but DM−1,N−1 in Lemma 2. Hence,
we find

E[CM,N ] ≤ 2 + 2((M − 1) + SL)NDM−1,N−1 . (22)

For the limit of N →∞, using Theorem 3 we obtain

lim
N→∞

E[CM,N ]

N1− 1
M−1

≤ lim
N→∞

2 + 2((M − 1) + SL)NDM−1,N−1

N1− 1
M−1

= ((M − 1) + SL)Γ(1 +
1

M − 1
) ∈ O(M) .

Therefore, we find E[CM,N ] ∈ O(MN1− 1
M−1 ).
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